About this Course

Database systems are used to provide convenient access to disk-resident data through efficient query processing, indexing structures, concurrency control, and recovery. This course delves into new frameworks for processing and generating large-scale datasets with parallel and distributed algorithms, covering the design, deployment and use of state-of-the-art data processing systems, which provide scalable access to data.

Specific topics covered include:

• Efficient query processing
• Indexing structures
• Distributed database design
• Parallel query execution
• Concurrency control in distributed parallel database systems

• Data management in cloud computing environments
• Data management in Map/Reduce-based NoSQL database systems

Required Prior Knowledge and Skills

• Basic statistics and computer science knowledge including computer organization and architecture, discrete mathematics, data structures, and algorithms
• Knowledge of high-level programming languages (e.g., C++, Java) and scripting language (e.g., Python)

Learning Outcomes

Learners completing this course will be able to:

• Differentiate among major data models such as relational, spatial, and NoSQL
• Perform queries (e.g., SQL) and analytics tasks in state-of-the-art database systems
• Apply leading-edge techniques to design/tune distributed and parallel database systems
• Utilize existing NoSQL database systems as appropriate for specified cases
• Perform database operations (e.g., selection, projection, join, and groupby) in state-of-the-art cluster computing systems such as Hadoop/Spark
• Perform scalable data processing operations (e.g., selection, projection, join, and groupby) in cloud computing environments, including Amazon AWS

Projects

• Project 1: Movie Recommendation Database
• Project 2: Distributed Movie Recommendation Database
• Project 3: Location-Aware Twitter Analytics
• Project 4: Spatial Data Processing using Apache Spark
• Project 5: SQL queries on Amazon EC2

Course Content

Instruction
• Video Lectures
• Other Videos
• Readings
• Interactive Learning Objects
• Live office hours
• Webinars

Assessments
• Practice activities and quizzes (auto-graded)
• Practice assignments (instructor- or peer-reviewed)
• Team and/or individual project(s) (instructor-graded)
• Final exam (graded)

Estimated Workload/Time Commitment Per Week

Approximately 15-20 hours per week.

Technology Requirements

Hardware
• Standard with major OS

Software and Other
• To complete course projects, some of the following software may be required: Amazon AWS Cloud, Hadoop/Spark, GitHub, PostgreSQL, MongoDB, Neo4j.
Course Outline

Unit 1: Basic Data Processing Concepts

Learning Objectives
1.1: Explain Data Models and Data processing concepts
1.2: Utilize Relational Model and Relational Algebra
1.3: Utilize SQL query language

- Module 1: Big Data and Data Processing
 - Introduction to Data and Data Processing
 - Database Management Systems
 - Data Models
- Module 2: Basic Data Concepts
 - Database Systems - What and Why?
 - Database Management Systems
 - Data Model
 - Database Design: Entity Relationship Model to Relational Model
 - Entity Relational Model
 - ER to Relational Model
- Assignment: Create a Movie Database
- Relational Model and Relational Algebra
 - Relational Data Model
 - Relational Algebra: Query Language
 - Query Language: Union
 - Query Language: Difference
 - Query Language: Cartesian Product
 - Query Language: Selection
 - Query Language: Projection
 - Query Language: Intersection
 - Query Language: 0-Join
- SQL Query Language:
 - Part 1: SQL Query Language
 - Part 2: SQL Query Language
 - Assignment: SQL Query for Movie Recommendation
Unit 2: Data Storage and Indexing

Learning Objectives
2.1 Recognize major data storage layouts
2.2 Identify major indexing schemes in Database Systems
 • Unit Introduction
 • Module 1: Major Storage Layouts
 • Introduction to Data Storage
 • Alternative File Organizations
 • Module 2: Major Indexing Schemes in Database Systems
 • Hash-based Indexes
 • Index Classification

Unit 3: Transactions and Recovery

Learning Objectives
3.1 Examine the ACID properties
3.2 Explain Transactions and Concurrency Control concepts
3.3 Describe how recovery from failures happens in database systems
 • Unit Introduction
 • Module 1: ACID Properties
 • Principles of Transactions: ACID Properties
 • Module 2: Concurrency Control Concepts
 • Concurrency Control
 • Module 3: Lock-based Concurrency Control and Recovery from Failures
 • Lock-Based Concurrency Control
 • Database Recovery

Unit 4: Principles of Distributed and Parallel Database Systems

Learning Objectives
4.1 Describe data fragmentation and replication models
4.2 Describe the components of a distributed database
4.3. Apply skills learned to complete an assignment using data partitioning
 • Unit Introduction
 • Module 1: Distributed Databases: Why, What?
 • Why Distribution?
 • Module 2: Data Fragmentation and Replication Model
 • Introduction to Fragmentation
 • Introduction to Replication
 • Assignment: Data Fragmentation
• Module 3: Advanced Distributed Database Systems
 • Query Processing and Optimization in Distributed Databases
 • Distributed Query Processing
 • Total Cost of Query Execution Plan
• Assignment: Query Processing
• Module 4: Parallel Database Systems
 • Parallel Data Architecture
 • Introduction to Parallel DBMS
 • The Different Types of DBMS Parallelism
 • Parallel Sorting and Joins
• Assignment: Parallel Sort and Joins

Unit 5: NoSQL Database Systems

Learning Objectives
• Unit Introduction
• Module 1: NoSQL Database Systems
 • Key-Value Stores
 • Graph Databases
 • Document Databases
• Module 2: Big Data Analytics Systems
 • Intro Map-Reduce / Spark
 • Data Analytics in Map-Reduce / Spark
 • Graph Processing Engines
• Module 3: Data Processing on Modern HW

PROJECT: Distributed Movie Recommendation Database

Unit 6: Big Data Tools

PROJECT: Location-Aware Twitter Analytics
PROJECT: Spatial Data Processing using Apache Spark
Unit 7: Additional Tools Used for Data Visualization

Learning Objectives
7.1 Explain data processing in the cloud
7.2 Evaluate service models
7.3 Evaluate deployment models

• Unit Introduction
• Module 1: Introduction to Cloud Computing
 • Introduction to Cloud Computing
• Module 2: Service Models
 • Service Models
• Module 3: Deployment Models
 • Deployment Models

Unit 8: Cloud-based Data Management

Learning Objectives
8.1 Explain AWS

• Unit Introduction
• Module 1: Amazon Web Services
 • Introduction to Amazon Web Services
 • AWS Computing
 • AWS Storage
 • AWS Queueing Services
• Module 2: Build an Elastic Cloud Application
 • AWS Interfaces
 • Auto-Scaling
• Module 3: Build a MapReduce Cloud Application
 • Scalable Data Processing
 • AWS Security

PROJECT: SQL queries on Amazon EC2
About ASU

Established in Tempe in 1885, Arizona State University (ASU) has developed a new model for the American Research University, creating an institution that is committed to access, excellence and impact.

As the prototype for a New American University, ASU pursues research that contributes to the public good, and ASU assumes major responsibility for the economic, social and cultural vitality of the communities that surround it. Recognizing the university’s groundbreaking initiatives, partnerships, programs and research, *U.S. News and World Report* has named ASU as the most innovative university all three years it has had the category.

The innovation ranking is due at least in part to a more than 80 percent improvement in ASU’s graduation rate in the past 15 years, the fact that ASU is the fastest-growing research university in the country and the emphasis on inclusion and student success that has led to more than 50 percent of the school’s in-state freshman coming from minority backgrounds.

About Ira A. Fulton Schools of Engineering

Structured around grand challenges and improving the quality of life on a global scale, the Ira A. Fulton Schools of Engineering at Arizona State University integrates traditionally separate disciplines and supports collaborative research in the multidisciplinary areas of biological and health systems; sustainable engineering and the built environment; matter, transport and energy; and computing and decision systems. As the largest engineering program in the United States, students can pursue their educational and career goals through 25 undergraduate degrees or 39 graduate programs and rich experiential education offerings. The Fulton Schools are dedicated to engineering programs that combine a strong core foundation with top faculty and a reputation for graduating students who are aggressively recruited by top companies or become superior candidates for graduate studies in medicine, law, engineering and science.

About the School of Computing, Informatics, & Decision Systems Engineering

The School of Computing, Informatics, and Decision Systems Engineering advances developments and innovation in artificial intelligence, big data, cybersecurity and digital forensics, and software engineering. Our faculty are winning prestigious honors in professional societies, resulting in leadership of renowned research centers in homeland security operational efficiency, data engineering, and cybersecurity and digital forensics. The school’s rapid growth of student enrollment isn’t limited to the number of students at ASU’s Tempe and Polytechnic campuses as it continues to lead in online education. In addition to the Online Master of Computer Science, the school also offers an Online Bachelor of Science in Software Engineering, and the first four-year, completely online Bachelor of Science in Engineering program in engineering management.
Creators

Mohamed Sarwat is an Assistant Professor of Computer Science and the director of the Data Systems (DataSys) lab at Arizona State University (ASU). He is also an affiliate member of the Center for Assured and Scalable Data Engineering (CASCADE). Before joining ASU, Mohamed obtained his MSc and PhD degrees in computer science from the University of Minnesota. His research interest lies in the broad area of data management systems.

Ming Zhao is an associate professor of the ASU School of Computing, Informatics, and Decision Systems Engineering. Before joining ASU, he was an associate professor of the School of Computing and Information Sciences (SCIS) at Florida International University. He directs the Research Laboratory for Virtualized Infrastructure, Systems, and Applications (VISA). His research interests are in distributed/cloud computing, big data, high-performance computing, autonomic computing, virtualization, storage systems and operating systems.