About this course

Database systems are used to provide convenient access to disk-resident data through efficient query processing, indexing structures, concurrency control, and recovery. This course delves into new frameworks for processing and generating large-scale datasets with parallel and distributed algorithms, covering the design, deployment and use of state-of-the-art data processing systems, which provide scalable access to data.

Specific topics covered include:
- Efficient query processing
- Indexing structures
- Distributed database design
- Parallel query execution
- Concurrency control in distributed parallel database systems
- Data management in cloud computing environments
- Data management in Map/Reduce-based
- NoSQL database systems

Required prior knowledge and skills

- Basic statistics and computer science knowledge including computer organization and architecture, discrete mathematics, data structures, and algorithms
- Knowledge of high-level programming languages (e.g., C++, Java) and scripting language (e.g., Python)

Learning Outcomes

Learners completing this course will be able to:
- Differentiate among major data models such as relational, spatial, and NoSQL
- Perform queries (e.g., SQL) and analytics tasks in state-of-the-art database systems
- Apply leading-edge techniques to design/tune distributed and parallel database systems
- Utilize existing NoSQL database systems as appropriate for specified cases
- Perform database operations (e.g., selection, projection, join, and groupby) in state-of-the-art cluster computing systems such as Hadoop/Spark
- Perform scalable data processing operations (e.g., selection, projection, join, and groupby) in cloud computing environments, including Amazon AWS

Estimated Workload/Time Commitment Per Week

15 - 20 hours per week

Technology Requirements

Hardware - Standard hardware with major OSSoftware and Other (programs, platforms, services, etc.) - To complete course projects, some of the following may be required: Amazon AWS, Cloud, Hadoop/Spark, GitHub, PostgreSQL, MongoDB, Neo4j.
Dr. Mohamed Sarwat

Mohamed Sarwat is an Assistant Professor of Computer Science and the director of the Data Systems (DataSys) lab at Arizona State University (ASU). He is also an affiliate member of the Center for Assured and Scalable Data Engineering (CASCADE). Before joining ASU, Mohamed obtained his MSc and PhD degrees in computer science from the University of Minnesota. His research interest lies in the broad area of data management systems.

Dr. Ming Zhao

Ming Zhao is an associate professor of the ASU School of Computing, Informatics, and Decision Systems Engineering. Before joining ASU, he was an associate professor of the School of Computing and Information Sciences (SCIS) at Florida International University. He directs the Research Laboratory for Virtualized Infrastructure, Systems, and Applications (VISA). His research interests are in distributed/cloud computing, big data, high-performance computing, autonomic computing, virtualization, storage systems and operating systems.